
www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

Vulnerabilities of Web
Applications: Good Practices
and New Trends

Mateusz Nawrocki | Cracow University of Technology, Poland | ORCID:
0009-0007-5370-3497

Joanna Kołodziej | NASK – National Research Institute, Poland | ORCID:
0000-0002-1881-6812

Abstract
Web application security remains a critical challenge in

mitigating vulnerabilities that expose sensitive data and systems to
cyberattacks. This paper addresses the recent trends in the vulnera-
bility of web applications to cyberattacks. It explores implementing
and evaluating security mechanisms in web services guided by the
Open Web Application Security Project’s (OWASP) Top 10 frame-
work. The OWASP analyser – a test application prepared to simu-
late the broken access control, Structured Query Language (SQL)
Injection, and cross-site scripting (XSS) attacks – was executed in
three realistic scenarios: web applications without any protection
mechanism, essential safeguards, and advanced measures. The
experimental results demonstrate the effectiveness of layered
security strategies and highlight the best practices, such as role-
based access control, secure cryptographic methods, and compre-
hensive logging. The analysis highlights the need to embed security
throughout Web applications’ implementation and use cycle. While
advanced measures, such as encryption and real-time monitoring,
increase resilience to sophisticated attacks, even basic practices can
provide significant application protection if applied consistently.

Keywords
cybersecurity, vulnerability, web application, OWASP TOP 10

Received: 11.10.2024

Accepted: 20.12.2024

Published: 25.12.2024

Cite this article as:
M. Nawrocki, J. Kołodziej,
“Vulnerabilities of web
applications: Good
practices and new
trends,” ACIG, vol. 3,
no. 2, 2024. doi: 10.60097/
ACIG/199521

Corresponding author:
Mateusz Nawrocki, Cracow
University of Technology,
Poland; E-mail: mateusz.
nawrocki@pk.edu.pl

0000-0002-4686-7334

Copyright:
Some rights reserved
(CC-BY):
Mateusz Nawrocki
Joanna Kołodziej
Publisher NASK

http://www.acigjournal.com
https://orcid.org/0000-0002-4686-7334
https://orcid.org/0000-0002-4686-7334

Mateusz Nawrocki, Joanna Kołodziej

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

1. Introduction

Web applications have become deeply embedded
in various fields and aspects of functioning in the

IT era. It isn’t easy to consider modern e-commerce management
systems, communications, entertainment, and banking and finan-
cial services without sophisticated, intelligent, and responsive
web services, recently supported by artificial intelligence (AI). The
Internet was recognized in the early 1990s as the sixth primary
mass medium in civilisation’s development. Thus, web applications
have become the foundation for developing modern digital tech-
nologies. However, the ubiquity of digital applications makes them
prime targets for cyberattacks. Security gaps and any vulnerability
to external manipulation are exploited to steal data, users’ identi-
ties, and, finally, to obtain specific financial benefits [1].

Security in IT refers primarily to ensuring the stability and resilience
of various applications, systems, and data against unauthorised
attacks that may result in illegal access to these resources. Over the
past few years, this issue has been a frequent topic of commercial
reports prepared for various institutions, from global agencies and
government structures to scientific publications of interest mainly
to the academic community. An example of such a publication is the
work of Al-Ibrahim and Al-Deen [1], which describes the principal
vulnerabilities of educational and research-related websites and ser-
vices and methods to counteract the poisoning of content published
there. The authors point out differences like these threats depend-
ing on the ownership structure of the university or school and the
education profile. An example of a publication aimed at e-commerce
environments is the report prepared by Thuraisingham et al. [2],
which – in addition to threats and the most common attacks –
describes tools to support methods of controlling access to the
infrastructure and resources of a given company as well as secure
systems for managing workflow in a company or an organisation.

Within the rapidly evolving IT sector, threats are also undergo-
ing continuous transformation. As the amount of sensitive data
available online increases, so does the need for tools to protect it.
Effective data protection systems for online systems should work
based on the following basic principles:

• Separation of databases from applications (installation on differ-
ent servers)

• Encryption of data files and backups
• Widely used firewalls and other methods to limit access to sensi-

tive data.

www.acigjournal.com

Vulnerabilities of Web Applications

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

However, using even the strictest procedures and the most per-
fect tool does not provide a 100% guarantee of protecting data and
resources from unauthorised access and use. For example, when
identifying and analysing threats such as phishing, it is essential
to remember that these attacks often take advantage of human
naiveté and inattention by enabling unauthorised access to sensi-
tive data [3]. Today, user behaviour and preferences are the weak-
est links in the security chain [4].

The Open Web Application Security Project (OWASP) initiative [5]
has played a fundamental role in identifying and developing pre-
vention methods for Web application security’s highly complex
thematic horizon. OWASP is not only a project but a global com-
munity that makes efforts to improve web application security. This
community’s main activities are identifying and compiling complex
taxonomies, ranking threats, and developing strategies and guide-
lines for mitigating and eliminating security vulnerabilities in web
applications. Every 3 years OWASP publishes Top 10 reports on
the most critical vulnerabilities affecting the security of web appli-
cations, highlighting areas that require focused attention and the
implementation of appropriate protective mechanisms [6].

The research presented in this paper aims to briefly analyse web
application vulnerabilities and evolving trends in developing strat-
egies for securing these applications by comparing and analysing
the last two editions of the OWASP Top 10 reports from 2017 and
2021. Understanding the nature and sources of web application
vulnerabilities to attack and manipulation is paramount in an era
where web applications are integral parts of our digital lives.

Based on the latest OWASP 2021 report, an OWASP analyser (OA)
tool was developed and installed to illustrate web application vul-
nerabilities to specific attacks. OA is a hybrid web application com-
bining features frequently encountered in social media platforms,
e-commerce websites, and content management systems (CMS). It
comprehensively tests various vulnerabilities and security defences
in a single web environment. Through deploying multiple layers of
security, ranging from basic defence mechanisms (or lack thereof)
to approaches from OWASP Top 10 recommendations, OA moni-
tors exploitation of the specific vulnerabilities and assesses which
defence mechanisms best mitigate or prevent possible attack
scenarios.

The experiments conducted using AO were aimed at identifying
critical vulnerabilities of web applications based on the guidelines

http://www.acigjournal.com

Mateusz Nawrocki, Joanna Kołodziej

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

of the 2021 edition of the OWASP Top 10 report. Three applica-
tion variants were implemented – from a version with no protec-
tion through an iteration containing basic security measures to a
robust configuration using advanced defences. Penetration tests
were conducted using popular security tools, such as Burp Suite [7],
simulating Structured Query Language (SQL) Injection, and XSS and
phishing attacks. The effectiveness of the defence methods used in
the tests was evaluated, as was the difficulty level in bypassing each
security measure. The experimental analysis concludes with recom-
mendations and insights to raise awareness among developers and
end users of the most prevalent cyber security threats.

The remainder of the paper is organised as follows. Section 2 out-
lines the main tenets of the OWASP Top 10 reports. The last two
editions of these reports were compared, and a simple comparative
analysis highlighted changes in the threat landscape and trends in
the development of effective web application security tools. Section
3 describes the architectural model concepts, functions, and rela-
tionships between the main components of the OA application. The
experimental analysis and results obtained are described at length
in Section 4. Section 5 lists the most important web application
security guidelines. The work concludes with Section 6.

2. OWASP Top 10 – A Review of 2017 and 2021
Editions
OWASP is a global non-profit organisation that brings

together security experts and developers striving to improve the
security of web applications. OWASP reports have become a road-
map for the focused community. They set trends in the security
market for modern intelligent web services.

The first OWASP Top 10 report was released in 2003, with subsequent
updates following approximately every 3 years: 2004, 2007, 2010,
2013, and 2017. The latest revision was published in 2021, suggesting
that a new edition may soon be on the horizon. Each release reflects
shifts in the threat landscape, incorporating new vulnerabilities and
attack vectors that emerge alongside evolving technologies [8].

This section presents a brief comparative analysis of the last two
editions of the OWASP Top 10 reports: the 2017 edition and the
2021 edition. The analysis focuses primarily on the evolution of
web application vulnerabilities over just 3 years. Comparing these
two OWASP reports shows how crucial the OWASP community is in
shaping web application security practices.

www.acigjournal.com

Vulnerabilities of Web Applications

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

2.1. Review of the 2021 Edition of OWASP Top 10
Below is a short review of the vulnerabilities in the 2021

edition of the OWASP report, which outlines the changes compared
to the 2017 edition, along with the key threats and recommended
defences.

1. A01 – 2021: Broken access control. It occurs when applica-
tions fail to enforce access restrictions properly and give unau-
thorised users access to the data. This vulnerability is the most
serious web application security risk (5th position in the 2017
edition).

2. A02 – 2021: Cryptographic failures. It results from insufficient
or improper use of cryptography, such as storing passwords in
plain text or using outdated algorithms. Previously known as
A03 – 2017: Sensitive Data Exposure, it often leads to sensitive
data exposure.

3. A03 – 2021: Injection. It involves unvalidated user input reach-
ing an interpreter (e.g. databases), leading to the execution of
unintended commands. Defensive measures include parame-
terised queries and thorough validation of all inputs. The 2021
edition contains XSS.

4. A04 – 2021: Insecure design. A new category that highlights
shortcomings in the early design stages, such as neglecting
threat modelling or risk assessment.

5. A05 – 2021: Security misconfiguration. This covers a wide
range of misconfigurations, like leaving default credentials
unchanged, enabling debug modes in production, or inactive
unnecessary features. It was A06 in the 2017 edition.

6. A06 – 2021: Vulnerable and outdated components. It
addresses risks of running unsupported or outdated software
components, libraries, and frameworks. Regular updates and
dependency checks are critical for mitigation.

7. A07 – 2021: Identification and authentication failures – for-
merly known as Broken Authentication. This focuses on
weak passwords, insufficient multi-factor authentication (MFA),
or poor session management. Enforcing strong password poli-
cies and secure session handling is crucial.

8. A08 – 2021: Software and data integrity failures. This
emphasises maintaining the integrity of application code and
data, such as verifying software updates via digital signatures
and using secure serialisation – a new category in 2021.

9. A09 – 2021: Security logging and monitoring failures. This
category reflects the importance of logging and monitoring
security events. Without proper logs or alerting mechanisms,
attacks may go unnoticed for long periods.

http://www.acigjournal.com

Mateusz Nawrocki, Joanna Kołodziej

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

10. A10 – 2021: Server-side request forgery (SSRF). It allows
attackers to manipulate server-side requests, potentially
accessing internal systems or sensitive data that would other-
wise be restricted.

2.2. Comparison of the 2017 and 2021 Editions
The results of a short comparative analysis of both OWASP

Top 10 editions are presented in Fig. 1.

The 2017 report outlined 10 critical threats: injection, broken
authentication, and security misconfiguration. The main changes in
the 2021 report can be defined as follows:

1. Three new categories
a. Insecure design emphasises addressing security consider-

ations during the initial design phase.
b. Software and data integrity failures focuses on code and data

integrity issues, including secure software updates and seri-
alisation methods.

c. C. server-side request forgery (SSRF) highlights vulnerabilities
allowing attackers to manipulate server-side requests to
access internal resources.

2. Renamed and merged categories
 Particular vulnerabilities were combined or renamed to reflect

better current cybersecurity challenges (e.g. broken authentica-
tion became identification and authentication failures).

2. Greater emphasis on secure design
 The 2021 edition underlines the need to integrate security

throughout the entire application lifecycle, rather than viewing
it solely as an implementation concern.

A comparative analysis of the 2021 and 2017 versions of the OWASP
Top 10 reveals several observations about changing trends in web
application security vulnerabilities. These observations have substan-
tial implications for security practitioners, developers, and organisa-
tions looking to strengthen their web application security measures.
One finding is the continued presence of three threats that emerged
in 2017. This means that injection, broken access control and cryp-
tographic failure threats are still relevant and must be prioritised
consistently [8]. The 2021 report updates the descriptions and scope
of some vulnerabilities to account for the dynamics of changes in the
development of modern web application architectural models.

Two new classes of vulnerabilities featured in the 2021 edition;
“Software and Data Integrity Failures” and “Unsecured Design,”

www.acigjournal.com

Vulnerabilities of Web Applications

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

20
17

20
21

A1
: 2

01
7-

In
je

ct
io

n

O
W

AS
P

TO
P

10

A2
: 2

01
7-

Br
ok

en
 a

ut
he

nt
ic

at
io

n

A3
: 2

01
7-

Se
ns

iti
ve

 d
at

a
ex

po
su

re

A4
: 2

01
7-

XM
L

ex
te

rn
al

 e
nt

iti
es

 (X
XE

)
A5

: 2
01

7-
Br

ok
en

 a
cc

es
s

co
nt

ro
l

A6
: 2

01
7-

Se
cu

rit
y

m
is

co
nf

ig
ur

at
io

n

A7
: 2

01
7-

C
ro

ss
-s

ite
 s

cr
ip

tin
g

(X
SS

)

A8
: 2

01
7-

In
se

cu
re

 d
es

er
ia

liz
at

io
n

A9
: 2

01
7-

U
si

ng
 c

om
po

ne
nt

s
w

ith
 k

no
w

n
vu

ln
er

ab
ilit

ie
s

In
te

gr
at

ed
 in

to
 n

ew
/e

xi
st

in
g

ca
te

go
ry

A0
1:

 2
02

1-
Br

ok
en

 a
cc

es
s

co
nt

ro
l

A0
2:

 2
02

1-
C

ry
pt

ot
og

ra
ph

ic
 fa

liu
re

s

A0
4:

 2
02

1-
In

se
cu

re
 d

es
ig

n
N

EW

A0
5:

 2
02

1-
Se

cu
rit

y
m

is
co

nf
ig

ur
at

io
n

A0
6:

 2
02

1-
Vu

ln
er

ab
le

 a
nd

 o
ut

da
te

d
co

m
po

ne
nt

s

A0
7:

 2
02

1-
Id

en
tif

ic
at

io
n

an
d

au
th

en
tic

at
io

n
fa

ilu
re

s

A0
8:

 2
02

1-
So

ftw
ar

e
an

d
da

ta
 in

te
gr

ity
 fa

ilu
re

s
N

EW

A0
9:

 2
02

1-
Se

cu
rit

y
lo

gg
in

g
an

d
m

on
ito

rin
g

fa
ilu

re
s

A1
0:

 2
02

1-
Se

rv
er

-s
id

e
re

qu
es

t f
or

ge
ry

 N
EW

A0
3:

 2
02

1-
In

je
ct

io
n

A1
0:

 2
01

7-
In

su
ffi

ci
en

t l
og

gi
ng

 &
 m

on
ito

rin
g

C
at

eg
or

y
m

ov
ed

 d
ow

n

C
at

eg
or

y
m

ov
ed

 u
p

Fi
gu

re
 1

. C
om

pa
ris

on
 o

f v
ul

ne
ra

bi
lit

y
ra

nk
in

gs
 in

 th
e

20
17

 a
nd

 2
02

1
ed

iti
on

s
of

 O
W

AS
P

To
p

10
 re

po
rt

s
(b

as
ed

 o
n

th
e

so
ur

ce
 [8

]).

http://www.acigjournal.com

Mateusz Nawrocki, Joanna Kołodziej

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

emphasise the importance of addressing security issues as early as
a web application’s design and implementation stage. The grow-
ing prevalence of data integrity in modern applications was also
highlighted.

The simple comparative analysis conducted in this chapter has con-
firmed the dynamics of the development of Internet applications
along with new threats. Many researchers refer to this phenom-
enon as a dynamic threat landscape. Security strategies need to
evolve at a pace similar to the development of application develop-
ment tools, and employers and organisations need to adopt flex-
ible and adaptive strategies for web application security, staying
abreast of the latest trends and vulnerabilities. Such adaptability is
critical to effectively countering new and emerging threats.

3. OWASP Analyser
The original OA application was inspired by illustrat-

ing specific threat scenarios and the significant vulnerabilities of
web applications to selected attacks, such as injection or XSS. The
application is designed to demonstrate the consequences of these
attacks in specific examples – this could be data theft or unautho-
rised access to an account. With the use of OA, it becomes possible
to demonstrate robust defence mechanisms and raise awareness
among users and developers about the critical importance of ade-
quate security measures throughout the software lifecycle.

There are already some applications on the market with similar
functionality. One example is Damn Vulnerable Web Application
(DVWA) [9]. DVWA is a web application designed as a tool for learn-
ing and testing various security techniques, such as SQL Injection
and XSS, in a controlled environment. It is particularly useful for
beginners in penetration testing and vulnerability analysis. Another
example is OWASP Juice Shop [10], which is used to simulate real-
world security vulnerabilities. OWASP Juice Shop is a modern web
application aimed at learning and testing skills in cybersecurity.
The project supports development in application security by provid-
ing scenarios aligned with the OWASP Top 10. Another example is
bWAPP [11], which is particularly useful for practicing and under-
standing over 100 web vulnerabilities, including those outlined in
the OWASP Top 10, in a safe and controlled environment, making it
an excellent tool for security enthusiasts, developers, and students
to enhance their knowledge of web application security. Against this
background, OA stands out for its flexibility and easy adaptability to

www.acigjournal.com

Vulnerabilities of Web Applications

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

different threat landscapes, and meets the guidelines in the latest
OWASP top 10 reports.

3.1. OWASP Analyser Architectural Model
Figure 2 presents a high-level diagram of the OA archi-

tectural model. This model consists of three main interconnected
modules: a client-side interface module, a Python-based server,
and an SQLite database.

3.1.1. Client Module
The client module was implemented using typical web

technologies, including HTML, CSS, and TypeScript, combined with

1

2

5

END USER
(web browser. e.g.

chrome/edge)

ANGULAR-BASED FRONT END
(HTML, CSS, TS)

• Registration, login, post
creation

• Account mangement, contact
form

• Post search and deletion
• Initial input validation

(client-side)

3 4

6

PYTHON SERVER
(FLASK/FASTAPI FRAMEWORK)

HTTP(S)

DB queries

Secure key retrieval

H
TT

P(
S)

 re
qu

es
ts

 (r
es

t A
PI

)

• Core business logic, session
mangement, authentication

• Role-based access control
(RBAC)

• Input validation & sanitization
(preventing injection)

• API endpoints
• Integration with key manager

(e.g., vault) for encryption

SQLITE DATABASE

• Stores user accounts, posts,
logs

• Hashing algorithms(e.g.,
BCRYPT) for passwords

• Parameterized SQL queries
(mitigating SQL injection)

• Sensitive fields optionally
encrypted at rest

KEY MANAGEMENT SERVICE

• Secure storage and rotation
of encryption keys

• Prevents key exposure in
server code of config files

• Acessed via authorized
requests from the python
server

LOGGING & MONITORING
MODULE

• Collects logs from server and
database

• Alerts on suspicious activities
• Tracks failed login attempts

anomalies

Figure 2. Architectural model of OWASP Analyzer. A high-level overview of six interconnected modules: client-side
front end, Python server, SQLite database, key management, and logging & monitoring for secure operations.

http://www.acigjournal.com

Mateusz Nawrocki, Joanna Kołodziej

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

the angular and angular material frameworks. These tools were
used to develop a user-friendly responsive interface while maintain-
ing flexibility for continuous improvements in security mechanisms.
For example, TypeScript’s strong typing system has facilitated accu-
rate input validation and helped to minimise security vulnerabilities
due to improper data handling. A concrete example is the login
method, which uses strict type-checking to prevent malicious or
invalid data from being processed, thus reducing the likelihood of
injection attacks.

The client module contains the most commonly attacked func-
tions, such as user registration, login, post creation, and account
management. Initially, these functions were left unprotected to
accurately simulate threats, such as XSS and cross-site request
forgery (CSRF). This created a baseline environment, which was
then used to test the effectiveness of the implemented security
tools.

3.1.2. Server Module
Developed in Python, the server module handles basic

tasks such as processing client requests, authenticating users, and
interacting with the database. Security testing of the base OA ver-
sions revealed several security vulnerabilities, especially endpoints,
without proper input validation and authorisation checks. For
example, the/admin endpoint initially allowed access to unauthen-
ticated users due to inadequate session token management.

In response, secure session management and robust backend
access controls were implemented. Session tokens were dynam-
ically generated using cryptographically secure random values
and securely stored to prevent unauthorised reuse or tampering.
Moreover, role-based access control restricted privileged opera-
tions, such as modifying user data, to authorised users only, reduc-
ing the likelihood of access controls being broken.

3.1.3. Database Layer
SQLite, a lightweight relational database, stores user cre-

dentials, posts, and other critical OA application data. Early iter-
ations of the application faced significant risks, such as storing
passwords in plain text. These issues were mitigated by adopting
strong password hashing algorithms (such as bcrypt [12]) and
ensuring that sensitive data remained encrypted during transmis-
sion and storage.

www.acigjournal.com

Vulnerabilities of Web Applications

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

Additional safeguards included parameterised queries to protect
against SQL Injection attacks. All user inputs were sanitised and
processed with prepared instructions, preventing malicious actors
from altering query logic or compromising database integrity.

3.1.4. Integrated Security Measures
Improvements in security mechanisms are methodically

implemented and tested across all application layers. On the front
end, input validation and client-side filters helped mitigate XSS
attempts and invalid requests. On the server side, stricter authen-
tication mechanisms, enforced API speed limits, and centralised
logging were used to detect anomalies. The database encrypted
critical fields, credentials were stored using secure hashing, and
periodic audits were implemented to identify potential component
vulnerabilities.

4. Experimental Analysis
The experimental analysis presented in this section shows

the vulnerability of web applications according to the OWASP Top
10 2021 report. In the experiments, the designed and implemented
OA application has the character of a social network. Social net-
works offer extensive configurations and options, which are easy to
use for attackers. Nowadays, in the era of social media saturation,
many people worldwide have several accounts on different sites.
The application client is, therefore, simple and intuitive. OA in this
implementation has the following functionalities:

1. login
2. Registering a new account with the application
3. Adding posts to the global board after completing the following

information:
• Title
• Category
• Location
• Date of the event (if you create a post with an event)
• Description

4. Deleting posts from the global board
5. Changing account settings – changing user name
6. Sending a contact form to the owner of web application
7. Searching for posts against criteria:

• Title
• Category
• Location

http://www.acigjournal.com

Mateusz Nawrocki, Joanna Kołodziej

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

• Start date
• End date

On the server module, addresses have been prepared waiting to send
the appropriate request from the client module, which is checked
and redirected to the database to perform the following operations:

1. Checking whether the logged-in user exists in the database,
and whether his data is correct to allow logging into the
application

2. Adding a new user to the database
3. Adding posts
4. Deleting posts
5. Editing posts
6. Log out
7. Checking authorisation
8. Deletion of authentication token data follows the logout pro-

cess of the user; this provides additional security against unau-
thorised access

9. Checking whether a given user has authorisation to perform
particular actions

10. Additional validation of data sent by the client application,
should an attack be attempted

11. Encryption of data so that it does not leak during attacks
12. Providing information on the operation performed, whether it

was successful, and what errors were intercepted
13. Sending a contact message to the application owner
14. Editing data regarding a particular account, error handling, for

example, what if incorrect data is given,
15. Unblocking CORS for the particular address to which requests

are made and those from which they are received,

The tests were conducted in the following three scenarios of OA
configuration:

1. Basic configuration (without security measures)
 In the initial phase, the application was tested without any

security mechanisms. This identifies the main problems and
vulnerabilities of the application related to lack of input valida-
tion, unsecured password storage, and unauthorised access to
administrative resources. The test results in this scenario served
as a baseline for subsequent testing phases.

2. Configuration with basic security measures
 The second phase introduced minimal security measures, such

as input validation, access restrictions to the administration

www.acigjournal.com

Vulnerabilities of Web Applications

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

panel, and parameterised queries. These changes aimed to mit-
igate common threats, including SQL Injection and XSS attacks.

3. Configuration with advanced security
 Comprehensive security mechanisms were implemented in the

final phase of experimental analysis. These included role-based
access control (RBAC), encryption of sensitive data, and auto-
mated session management. In addition, monitoring and log-
ging mechanisms were integrated to reduce response time to
potential attacks.

4.1. Results
The tests identified key weaknesses in application secu-

rity and evaluated the effectiveness of various protection methods.
The results of the experiments were interpreted in terms of the
following five criteria in line with the OWASP Top 10 2021 report:
flaws in access control mechanisms, vulnerability to SQL Injection
attacks, vulnerability to XSS attacks, vulnerability to cryptographic
errors and behaviour when logging, and monitoring tools are
introduced.

4.1.1. Unauthorised Access Control
Initial tests showed that an unauthenticated user could

access the administration panel through URL manipulation, for
example, by appending/admin to the page address. This allowed
unauthorised users to view sensitive data and potentially make sys-
tem-level changes. For the basic configuration, all 30 attempts to
access the admin panel without valid credentials succeeded, under-
scoring the severity of the vulnerability.

After implementing session management and enforcing server-side
validation through the validation of authorisation tokens and user
role verification, the vulnerability was successfully neutralised. In
repeated tests in the new configuration, none of the 30 unautho-
rised access attempts failed, translating into a 100% success rate in
blocking unauthorised logins.

Figure 3 shows the results of this experiment. It clearly shows the
importance of combining session token validation with robust
backend controls. Even if attackers try to manipulate URLs or inject
forged session tokens, the server’s RBAC mechanisms verify the
authenticity of each request and privilege level. As a result, only
legitimate and authenticated users with appropriate privileges
are granted access to the/admin route, reducing the risk of data
breaches or system misuse.

http://www.acigjournal.com

Mateusz Nawrocki, Joanna Kołodziej

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

Effectiveness of blocking unauthorized access
35

30
30 30

25

20

10

15

Attempts

N
um

be
r o

f a
tte

m
pt

s

Category
Blocked

5

0

Figure 3. Effectiveness of blocking unauthorised access. Results demonstrate the
significance of robust backend controls and session token validation in preventing
unauthorised attempts.

4.1.2. SQL Injection
In the initial phase of the application’s vulnerability to SQL

Injection attacks, crafted queries (e.g. ‘OR ‘1’=’1) were injected,
allowing attackers to retrieve sensitive data and unauthorised
access to critical information without valid credentials. To address
this problem, parameterised queries and additional input valida-
tion mechanisms were introduced, effectively sanitising user input
before passing it to the database. As a result, all 25 SQL Injection
attempts conducted in the follow-up tests were successfully
blocked. In addition, logging functions were improved to track sus-
picious queries, thus enabling faster incident response and anom-
aly detection. The results of these experiments are presented in
Fig. 4.

Effectiveness of blocking SQL injection attempts
30

25 25 25

20

10

15

Attempts

N
um

be
r o

f a
tte

m
pt

s

Category
Blocked

5

0

Figure 4. Effectiveness of blocking SQL Injection attempts. It highlights the reliability
of security mechanisms in detecting and preventing all SQL Injection attempts.

www.acigjournal.com

Vulnerabilities of Web Applications

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

4.1.3. Cross-Site Scripting
Cross-site scripting attacks primarily targeted a post-

creation form, in which malicious scripts were injected to activate
user accounts in browsers without their knowledge. In a basic con-
figuration, these scripts are executed without any restrictions, pos-
ing a serious threat to data confidentiality and integrity.

Once input sanitisation and content escaping techniques were
implemented, each of the 25 recorded XSS attack attempts was
successfully neutralised (see Fig. 5). The security measures demon-
strate that user-generated content is properly filtered and rendered
as a plain text, rather than processed as executable code. Defence
mechanisms are activated on the client side (to provide immediate
feedback and prevent basic exploits) and on the server side (to val-
idate and sanitise incoming data against more advanced payloads).

Attempts
Category

Blocked

Effectiveness of blocking XSS attacks
30

25
25 25

20

10

15

N
um

be
r o

f a
tte

m
pt

s

5

0

Figure 5. Effectiveness of blocking XSS attacks. It demonstrates the robustness of
implemented security measures in successfully preventing all XSS attack attempts.

4.1.4. Cryptographic failures
Initially, the application stored passwords in plain text,

which posed a serious security risk. The plain text credentials could
be immediately exploited if an attacker gains access to the data-
base. To address this vulnerability, the bcrypt hash algorithm was
integrated, introducing a computational cost that makes brute-
force attempts much more difficult.

In subsequent tests, brute-forcing passwords protected by bcrypt
took more than 10 hours of continuous computation on standard
hardware when configured with 10 rounds of hashing, as shown

http://www.acigjournal.com

Mateusz Nawrocki, Joanna Kołodziej

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

in Fig. 6. This marked improvement illustrates the effectiveness
of a robust hash function in protecting sensitive data. Salting and
appropriate cryptographic parameters further reduced the likeli-
hood of successful password cracking, ensuring that user creden-
tials remain secure even during a partial database breach. The
application strengthened its overall security status by adopting
standard cryptographic practices and protected users from unau-
thorised account access.

Impact of cryptographic improvement on security

Plaintext passwords

Hashed with bcrypt

0.0%

100.0%

Figure 6. Impact of cryptographic improvements on security. This highlights com-
plete transition from plain text passwords to secure hashing with bcrypt, ensuring
enhanced data protection.

4.1.5. Login and Monitoring
The application failed to log login attempts or suspicious

activity without activating logging and monitoring mechanisms,
making detecting attacks or investigating incidents difficult. In the
final configuration, event logging and real-time monitoring were
implemented to capture critical security events, such as failed login
attempts, SQL Injection attempts, and unusual user behaviour.

In most scenarios, these measures reduced response times from
several hours (up to 240 minutes) to less than 15 minutes, enabling
rapid intervention to stop threats. The results of the experiments are
shown in Fig. 7, indicating the importance of continuous monitoring
in implementing modern security strategies. By proactively analys-
ing logs, setting up automatic alerts, and reviewing anomaly reports,
organisations can respond quickly to potential breaches, thereby
minimising damage and preserving the integrity of user data.

4.2. Summary of the Experiments
Security tests have demonstrated the key role of proac-

tive measures in mitigating vulnerabilities commonly found in web

www.acigjournal.com

Vulnerabilities of Web Applications

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

applications. Even basic security measures, such as input valida-
tion, session management, and parameterised queries, can signifi-
cantly reduce the exposure of web services to threats, such as SQL
Injection, XSS, or unauthorised access to data and the application
itself.

The implemented advanced security mechanisms justified the con-
cept of a modular architectural model for modern web applica-
tions. Role-based access control and robust session management
have effectively neutralised access control security vulnerabilities
in modular architectures. Implementing advanced cryptographic
methods, such as the crypt hash method, has ensured sensitive
information’s integrity and data confidentiality. Logging and moni-
toring systems enabled rapid detection and response to suspicious
activity, minimising potential damage from brute force and injec-
tion attacks.

The experimental analysis conducted led to the following guide-
lines for web application security:

• Secure Application Life Cycle (SDLC): Security mechanisms must
be integrated at every implementation and application life cycle
stage, from design to deployment. Identifying potential threats
through threat modelling and secure coding practices can pre-
vent vulnerabilities from becoming web services.

Impact of logging and monitoring on threat response time

300

250

200

150

100

50

Before logging

240 min

15 min

Configuration

R
es

po
ns

e
tim

e
(m

in
ut

es
)

After logging0

Figure 7. Impact of logging and monitoring on threat response time. It
 demonstrates a significant reduction in response time from 240 minutes to 15 min-
utes after implementing logging and monitoring mechanisms.

http://www.acigjournal.com

Mateusz Nawrocki, Joanna Kołodziej

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

• Data validation and sanitisation: These are fundamental to pre-
venting injection attacks and ensuring data integrity. To ensure
maximum effectiveness, input data validation should be enforced
on both client and server sides.

• Cryptographic standards: Storing sensitive data, such as pass-
words, in plain text is a serious risk. Standard hash algorithms,
such as bcrypt, and encrypting sensitive fields are essential to
protect user information.

• Access control policies: Implementing detailed access con-
trol, including RBAC, allows users to access only the resources
required for their roles. Backend validation should complement
client-side controls to prevent circumvention.

• Regular updates and dependency management: Outdated software
components can introduce vulnerabilities that can be exploited.
Automated tools, such as dependency scanners, should be used
to identify and regularly update unprotected libraries.

• Comprehensive logging and monitoring: Effective logging prac-
tices enable early detection of malicious activity. Monitoring
tools should include real-time alerts for critical events, such as
repeated logging failures.

• Comprehensive logging and monitoring: Effective logging prac-
tices enable early detection of malicious activity. Monitoring tools
should include real-time alerts for critical events, such as repeated
login failures or injection attempts, enabling rapid intervention.

5. Challenges and Future Trends
Despite marked improvements in vulnerability mitigation,

especially in layered and modular architectures, organisations must
constantly adapt to the rapidly evolving threat landscape. As tech-
nology advances, new types (vectors) of attacks and methodologies
are emerging, requiring constant vigilance and innovation. Based
on the theoretical and experiential analysis of the threats and vul-
nerabilities of modern web applications conducted in this work, the
list of trends and key issues shaping the dynamics of broad changes
in web application security, presented later in this section, has been
defined.

5.1. Evolving Cyber Threats
Cybercriminals are rapidly refining their techniques, lever-

aging automation, social engineering, and AI-driven strategies to
launch more sophisticated attacks. Traditional defences, such as
basic firewalls or signature-based intrusion detection, may be insuf-
ficient against complex threats that adapt in real-time. This calls for

www.acigjournal.com

Vulnerabilities of Web Applications

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

advanced solutions that detect subtle anomalies, integrate threat
intelligence, and automatically orchestrate responses to contain
breaches before they escalate.

5.2. Integration with DevSecOps
The transition from traditional software development life-

cycles (SDLC) to more agile and continuous delivery models has
highlighted the need for DevSecOps [13], embedding security at
every stage of development. Organisations can identify and reme-
diate vulnerabilities earlier by automating security scans, code
reviews, and penetration tests as part of the CI/CD pipeline. This
approach reduces the likelihood of security issues persisting into
production while ensuring faster release cycles and more resilient
applications.

5.3. Microservices and Containerisation
Modern applications often adopt microservices architec-

ture and containerisation (e.g. Docker, Kubernetes) for scalability
and maintainability. However, each microservice and container
introduces its own dependencies, configurations, and potential
vulnerabilities. Securing these distributed environments requires
granular access controls, robust container isolation, and regular
updates of container images to prevent exploited or outdated com-
ponents from compromising the entire system.

Table 1. Challenges and trends in web application security.

Challenge/trend Description

Evolving Cyber Threats Sophisticated attacks leveraging automation, AI, and real-time adaptation; requires
anomaly detection and automated responses.

Integration with DevSecOps Embedding security in CI/CD pipelines to identify vulnerabilities early and improve
resilience.

Microservices and
Containerisation

Granular controls and container isolation are needed to secure dependencies and
configurations in distributed environments.

Zero-Trust Architecture Continuous verification and dynamic access policies to minimise trust and lateral
movement risks.

AI and Machine Learning (ML)
for Defence

Using advanced machine learning for threat detection and response while addressing
adversarial risks.

Regulatory Compliance and
Data Privacy

Compliance with data privacy regulations to avoid fines and reputational damage.

Continuous Security Education Training stakeholders to recognise threats and apply secure coding practices effectively.

http://www.acigjournal.com

Mateusz Nawrocki, Joanna Kołodziej

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

5.4. Zero-trust Architecture
A zero-trust model maintains that no user, device, or net-

work segment is inherently trusted. Instead, continuous verification
(e.g. using multi-factor authentication, dynamic access policies, and
strict segmentation) becomes the standard. As remote work and
cloud-based services expand, zero-trust frameworks help ensure that
each request is rigorously validated, reducing the attack surface and
limiting the lateral movement of adversaries once inside a network.

5.5. Artificial Intelligence and Machine Learning for Defence
While attackers leverage AI and machine learning to auto-

mate intrusion efforts, defenders can similarly employ these tech-
nologies for anomaly detection, threat intelligence, and real-time
correlation of events. Advanced machine learning models can help dif-
ferentiate legitimate user behaviour from malicious activities, signifi-
cantly improving incident response. However, the risk of adversarial
attacks (where attackers poison or manipulate machine learning mod-
els) remains an ongoing challenge that security teams must address.

5.6. Regulatory Compliance and Data Privacy
Growing awareness of data breaches and privacy viola-

tions has led to more stringent regulations, such as the General
Data Protection Regulation (GDPR) [14] in the European Union and
similar laws worldwide. Compliance requirements push organisa-
tions to adopt stricter security controls, encrypt sensitive data, and
maintain detailed logs. Meeting these standards can be complex,
but failure to do so exposes organisations to substantial fines and
reputational damage.

5.7. Continuous Security Education
Human factors often represent the weakest link in the secu-

rity chain. Social engineering, phishing, and credential theft rely on
user error or lack of awareness. Regular training and awareness pro-
grams are vital for developers and end-users, helping them recognise
threats, follow secure coding practices, and respond appropriately to
security incidents. Ongoing education ensures that stakeholders can
effectively navigate emerging threats and vulnerabilities.

6. Conclusions
This paper highlights the new trends and developments

in the security of web applications. A list of the most important

www.acigjournal.com

Vulnerabilities of Web Applications

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

vulnerabilities of these applications is published once every 3 years
as the OWASP Top 10 report. This report includes a ranking of vul-
nerabilities indicating the most up-to-date at a given time and the
most dangerous threats to users of web applications at all levels of
their use. Section 2 presented a simple comparative analysis of the
last two editions of the OWASP reports. This analysis showed how
the threat landscape has changed in just 3 years and the tremen-
dous need for flexible and responsive tools to prevent attacks and
eliminate detected web application vulnerabilities.

Experimental results underscore the need to embed security
throughout Web applications’ implementation and use cycle. While
advanced measures, such as encryption and real-time monitoring,
increase resilience to sophisticated attacks, even basic practices can
provide significant application protection if applied consistently.

Implementing automated security testing, coupled with ongoing
education of developers and users on best practices, is essential
to reduce the risk of losing data or sensitive information published
online. In addition, regular audits and updates are the cornerstone
of maintaining secure systems in an evolving threat landscape.

The future of web application security hinges on proactive inte-
grated approaches that blend automation, zero-trust principles,
and continuous monitoring. As organisations continue to embrace
cloud computing, containerisation, and microservices architectures,
DevSecOps practices have become indispensable, ensuring security
measures are embedded at every development and deployment
phase. By staying informed about the latest trends and adapting
defences accordingly, stakeholders can better protect critical data
and systems against the expanding spectrum of cyber threats.

References

[1] M. Al-Ibrahim, Y.S. Al-Deen, “The reality of applying security in web applica-
tions in academia,” International Journal of Advanced Computer Sciences and
Applications, vol. 5, no. 10, pp. 7–16, 2014. doi: 10.14569/IJACSA.2014.051002.

[2] B. Thuraisingham, C. Clifton, A. Gupta, E. Bertino, E. Ferrari (2002). Directions
for web and e-commerce applications security [Online]. Available: http://dx.doi.
org/10.2139/ssrn.333682 [Accessed: Dec 20, 2024].

[3] F. Salahdine, Z. El Mrabet, N. Kaabouch, “Phishing attacks detection a machine
learning-based approach,” 2021 IEEE 12th Annual Ubiquitous Computing,
Electronics & Mobile Communication Conference (UEMCON), New York, NY, 2021,
pp. 0250–0255.

http://www.acigjournal.com
https://doi.org/10.14569/IJACSA.2014.051002
http://dx.doi.org/10.2139/ssrn.333682
http://dx.doi.org/10.2139/ssrn.333682

Mateusz Nawrocki, Joanna Kołodziej

www.acigjournal.com ––– acig, vol. 3, no. 2, 2024 ––– doi: 10.60097/ACIG/199521

[4] Gartner, “What is Cybersecurity? Trends, Strategies, and Insights.” [Online].
Available: https://www.gartner.com/en/topics/cybersecurity [Accessed: Dec.
20, 2024].

[5] OWASP Foundation, “OWASP Foundation, the Open Source Foundation for
Application Security.” [Online]. Available: https://owasp.org/ [Accessed: Dec.
20, 2024].

[6] O.B. Fredj, O. Cheikhrouhou, M. Krichen, H. Hamam, A. Derhab, “An OWASP top
ten driven survey on web application protection methods,” in Risks and security
of internet and systems, Lecture Notes in Computer Science, J. Garcia-Alfaro, J.
Leneutre, N. Cuppens, R. Yaich, Eds. Cham: Springer, 2021, pp. 235–252.

[7] PortSwigger Ltd., “Burp Suite,” [Online]. Available: https://portswigger.net/
burp [Accessed: Dec. 20, 2024].

[8] OWASP Foundation, “OWASP Top Ten,” [Online]. Available: https://owasp.org/
www-project-top-ten [Accessed: Dec. 20, 2024].

[9] Ryan Dewhurst, “Damn Vulnerable Web Application (DVWA),” [Online].
Available: https://github.com/digininja/DVWA [Accessed: Dec. 20, 2024].

[10] OWASP Foundation, “OWASP Juice Shop,” [Online]. Available: https://owasp.
org/www-project-juice-shop/ [Accessed: Dec. 20, 2024].

[11] Malik Mesellem, “bWAPP: a buggy web application,” [Online]. Available: https://
www.itsecgames.com/ [Accessed: Dec. 20, 2024].

[12] Wikipedia, “bcrypt,” [Online]. Available: https://en.wikipedia.org/wiki/Bcrypt
[Accessed: Dec. 20, 2024].

[13] IBM Corporation, “What is DevSecOps?” [Online]. Available: https://www.ibm.
com/think/topics/devsecops [Accessed: Dec. 20, 2024].

[14] European Union, “Regulation (EU) 2016/679 of the European Parliament and
of the Council,” [Online]. Available: https://eur-lex.europa.eu/eli/reg/2016/679/
oj/eng [Accessed: Dec. 20, 2024].

www.acigjournal.com
https://www.gartner.com/en/topics/cybersecurity�
https://owasp.org/�
https://portswigger.net/burp�
https://portswigger.net/burp�
https://owasp.org/www-project-top-ten
https://owasp.org/www-project-top-ten
https://github.com/digininja/DVWA�
https://owasp.org/www-project-juice-shop/
https://owasp.org/www-project-juice-shop/
https://www.itsecgames.com/�
https://www.itsecgames.com/�
https://en.wikipedia.org/wiki/Bcrypt�
https://www.ibm.com/think/topics/devsecops�
https://www.ibm.com/think/topics/devsecops�
https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng�
https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng�

	_heading=h.gjdgxs
	_heading=h.30j0zll
	_heading=h.1fob9te
	_heading=h.3znysh7
	_heading=h.2et92p0
	_heading=h.tyjcwt
	_heading=h.3dy6vkm
	_heading=h.1t3h5sf
	_heading=h.wgqqunce6uwm
	_heading=h.4d34og8
	_heading=h.2s8eyo1
	_heading=h.17dp8vu
	_heading=h.3rdcrjn
	_heading=h.26in1rg
	_heading=h.lnxbz9
	_heading=h.35nkun2
	_heading=h.1ksv4uv
	_heading=h.44sinio
	_heading=h.2jxsxqh

